机读格式显示(MARC)
- 000 01915nam a2200325 a 4500
- 008 120510r20112002cc b 001 0 eng d
- 050 _4 |a QA241 |b .R675 2002
- 099 __ |a CAL 022012071060
- 100 1_ |a Rosen, Michael I. |q (Michael Ira), |d 1938-
- 245 10 |a Number theory in function fields / |c Michael Rosen.
- 260 __ |a [北京 : |b 世界图书出版公司,] |c 2011.
- 300 __ |a xii, 358 p. ; |c 25 cm.
- 490 0_ |a Graduate texts in mathematics ; |v 210
- 504 __ |a Includes bibliographical references (p. [341]-351) and indexes.
- 505 0_ |a Preface -- 1. Polynomials over finite fields -- 2. Primes, Arithmetic functions, and the zeta function -- 3. The reciprocity law -- 4. Dirichlet L-series and primes in an arithmetic progression -- 5. Algebraic function fields and global function fields -- 6. Weil differentials and the canonical class -- 7. Extensions of function fields, Riemann-Hurwitz, and the ABC theorem -- 8. Constant field extensions -- 9. Galois extensions : Hecke and Artin L-series -- 10. Artin's primitive root conjecture -- 11. The behavior of the class group in constant field extensions -- 12. Cyclotomic function fields -- 13. Drinfeld modules : an introduction -- 14. S-units, S-class group, and the corresponding L-functions -- 15. The Brumer-Stark conjecture -- 16. The class number formulas in quadratic and cyclotomic function fields -- 17. Average value theorems in function fields -- Appendix. A proof of the function field Riemann hypothesis.
- 534 __ |p Reprint. Originally published: |c New York : Springer,c2002. |z 0387953353.
- 650 _0 |a Finite fields (Algebra)
- 950 __ |a SCNU |f O156/R813.1